

### **Aruba Campus Access Webinar**

What to expect

#### **ENGLISH | Presenter: Jacob Stelmaszczyk**

PART 1: February 6<sup>th</sup>, 2023 | 9AM-11AM PST PART 2: February 8<sup>th</sup>, 2023 | 9AM-11AM PST

- Part 1 Introduces networking fundamentals, types of networking devices, VLANs, IP routing, switch virtualization, Aruba WLAN bridge mode
- Part 2 Covers VSX, Aruba WLAN tunneled & mixed mode, 802.1X authentication, Dynamic Segmentation and VxLAN GBP

#### **SPANISH | Presenter: Alvaro Tellez**

PART 1: February 6<sup>th</sup>, 2023 | 12:00-14:00 PST PART 2: February 8<sup>th</sup>, 2023 | 12:00-14:00 PST



### Aruba VSX



#### **AOS-CX Switch Virtualization: VSX vs VSF**







#### **VSX Benefits**



#### **Control Plane**

- Dual control plane: Better resiliency
- Unified management: Synced config, easy troubleshooting
- Independent software upgrades: Near zero downtime
- In-chassis (8400/6400) and device level redundancy

#### L2 distributed LAGs

- No spanning-tree requirement
- Loop-free L2 multi-pathing (active-active)
- Simple configuration
- Rapid failover

### VSX Benefits: Layer 3



#### L3 Links

- Various options:
  - Routed only ports (ROPs)
  - L2 ports associated with dedicated SVIs
  - VSX LAGs associated with dedicated SVIs
- Unified data path: active-active L2/L3 forwarding
- L3 ECMP + L2 VSX LAG (highly fault tolerant)

#### **Active-Active Gateway**

- Active-Active first hop gateway (VIP)
- No VRRP/HSRP
- Simple configuration
- No gateway protocol overhead
- DHCP relay redundancy

## Aruba Gateways



# Aruba WLAN forwarding modes

Bridge

#### **Tunnel Mode**

Gateway or Gateway Cluster



#### **Mixed Mode**

1 SSID: Bridge & Tunnel

Gateway or Gateway Cluster





### When to Use Gateways

More than 5000 clients

Dynamic segmentation

More than 500 APs

A key element in

Enhanced mobility

Tunneled WLANs

AOS10 architecture

Microbranch deployments

Network simplification

RADIUS proxy



### **Network Simplification**

# Must likely enable user VLANs on: Every AP-connected access switch Each AP port Trunk ports, support all user VLANs User VLANs likely span entire network

# Must only enable user VLANs on: Gateway Gateway ports on Core (Agg) switches Gateway Trunk ports Campus LAN User VLANs do not span entire network

### Gateway as L2 or L3 Device

### Layer 2 mode

Active GW VIP for VLANs 10,11,12



Typical for Campus deployment

### Layer 3 mode



Typical for Branch gateway deployment



### **Deployment with Gateways**



#### **Forwarding modes**

- Tunnel mode
- Mixed mode
- Microbranch mode (VPNC)

#### **AP - Gateway Communication**

- Version independent
- IPsec for control plane
- GRE for data plane

#### **Authentication and Encryption**

- AP is the authenticator
- Gateway act as a RADIUS proxy
- APs do encrypt/decryption



### **Gateway Cluster**

Aruba Central Seamless roaming Client/AP load balancing Gateway Hitless failover Cluster Client state sync Ease of deployment



#### **Automatic Cluster Mode**



### Aruba Tunneled Mode



### **Tunnel Forwarding Mode**

WLAN Employee
Tunnel Mode
802.1X
VLAN 11





### **AP to Gateway Connections**

#### **Control Plane**

- AP-GW Heartbeats
- Cluster information
- RADIUS
- Roaming assistance
- Orchestrated tunnel



**IPsec** 



#### **Data Plane**

- Client's traffic
- Single tunnel for all SSIDs



GRE



### **Tunnel Forwarding Mode**





### **Data Encryption**





### **AP to Gateway Cluster Tunnels**



### **Overlay Tunnel Orchestrator**



#### **OTO Service**

- Negotiate IPsec Phase1
- Share key material with APs and Gateways

#### **APs and Gateways**

- Negotiate IPsec Phase 2
- IPsec protect control plane communication

No controller discovery mechanism necessary

### Aruba Mixed Mode



#### Introduction

#### **Bridge & Tunnel Mode**

2 SSIDs: One Bridge, One Tunnel



#### **Mixed Mode**

1 SSID: Bridge & Tunnel



**Reduced number of SSIDs in Campus** 



### **Mixed Forwarding Mode**



### Mixed Forwarding Mode Architecture



Switch must support bridged clients VLANs on AP port

### Secure WLAN & 802.1X



#### **Authentication Overview**





#### 802.11 with 802.1X Connection Steps **RADIUS** Gateway Beacons Probe request 802.11 Probe response 802.11 Authentication 802.11 Association P **RADIUS (EAP) EAPOL** R **EAPOL RADIUS (EAP)** 802.1X 0 **EAPOL RADIUS (EAP)** X **EAPOL** RADIUS (EAP) Encryption keys 4-Way handshake negotiated

### Client Connecting to 802.1X SSID



#### Role-Based ArubaOS Firewall



Same network subnet
Same destination and application
Different User = different handling



#### Firewall Roles in Tunneled Mode



# Survivability



### Aruba AOS10 Architecture: Responsibilities

Device config, Firmware mgmt Management **Central** Control ClientMatch, AirMatch Services Key Mgmt, Air Group, RAPIDS, UCC



Authenticator

Users and devices

**APs** User Data

Forward, encrypt/decrypt

Telemetry

Feed AP info to Central

### **Key Management Survivability**

#### **Existing users**

- Can continuously do fast roaming
- PMK or R1 keys exist for 8 hours

#### New users

- PMK or R1 keys not shared between APs
- Must re-authenticate when roaming





### **Tunnels Rekeying**

#### Keys

- Valid for 36h / AP-GW
- 12h before expiration, new keys are generated





### **Tunnels Survivability**

Initial Orchestration Cloud is mandatory for initial tunnel orchestration

Survivability

Tunnel config from tunnel orchestrator is preserved in both AP and GW

Legacy Mode

When both AP & GW fails rekeying, AP and GW start legacy IKE process





# Wired Port Access & Dynamic Segmentation



### **Common Authentication Methods**

802.1X

- Supports bi-directional authentication
- Usernames/passwords and/or certificates
- Commonly used for employees

**MAC Auth** 

- Must manage MAC address DB
- Subject to spoofing, augment with ACLs and fingerprinting
- Commonly used for non-intelligent devices, like IoT

**Web Portal** 

- Commonly used in guest networks
- User device uses a web browser to authenticate
- Commonly used for guests



#### 802.1X Overview





### **Customizing Authenticated User Access**



### How the RADIUS Server Sends Dynamic Settings



**Aruba VSAs** 

Aruba-User-Role=employee

Assign user role to a client

Aruba-Poe-Priority=0

Set port POE priority



### **Dynamic Segmentation**





### **Dynamic Segmentation Overview**

- ✓ Consistent wireless and wired network security
- ✓ Centralized role-based policy enforcement
- ✓ Access to Aruba gateway security features
- ✓ Redundant gateway and cluster support





#### **Use Cases**

#### Wired/wireless traffic tunneled to Gateway

- ✓ Consistent user experience
- ✓ Centralized, role-based enforcement





## Security features applied to wired and wireless traffic

- Stateful firewall
- Deep packet inspection
- Device fingerprinting



### **Operation Overview**



### **UBT Zones**



ubt zone Building1
 primary-controller ip 10.1.10.100
ubt zone Building2
 primary-controller ip 10.1.20.100

UBT clients terminate on different Gateways

### **Tunneled Traffic Behavior: Multiple clients**

### Switch communicates gateway roles ubt-client-vlan 400 port-access role Employee

gateway-zone zone zone1 gateway-role VoIP

port-access role Voice

gateway-zone zone zone1 gateway-role Corporate

#### Gateway applies policy and VLAN

User-role Corporate Policy 1 Policy 2 vlan 4000 User-role VoIP Policy 1 Policy 2 vlan 3000





GRE

### VxLAN & GBP



### **Distributed Overlay Architecture**

Uniform bridging & routing across a campus topology

End-to-end segmentation using VXLAN-GBP

Efficient layer 2 extension across layer 3 boundaries

Transported across any IP network

Stable, predictable IP based backbone (no STP)



### **VXLAN Characteristics**

Usage

- Focused on data centers & Aruba Campus
- IP-based overlay technology

Overlay

- MAC in UDP (IP) format
- Runs on any IP routed infrastructure

Scaling

- Can leverage IP ECMP for load sharing
- 24-bit VXLAN ID: 16M IDs



### **VXLAN Terminology**



- Like classic VLAN without L3 IP Interface
- Totally isolated



- VXLAN Network Identifier
- 24-bit value





### **VXLAN VTEP**

Entry or "on-ramp" into the tunnel Device that interacts with other VTEPs V: 1001 V: 2001 V: 1001 Encapsulate traffic from endpoint, VTEP **VTEP** send via overlay tunnel to destination **S2 S**1 **IP Underlay S**3 **S4** Receive traffic from peer VTEP **VTEP VTEP** Decapsulate, send to endpoint V: 2001 V: 1001 V: 2001

### **VXLAN Packet Structure**

#### Header

• IP: 20 bytes

• UDP: 8 bytes

VNI: 3 Bytes (24 bits)

#### 50 bytes total

- 8 bytes VXLAN header
- 8 bytes UDP
- 20 bytes IP
- 14 bytes Ethernet

MTU greater than 1550 bytes

**VXLAN Flags** 

Group Policy ID (User Role)

**Virtual Network Identifier (VNI)** 

Reserved

| Outer MAC | Outer IP | Outer UDP | VXLAN Header | Ethernet Frame           | FCS |
|-----------|----------|-----------|--------------|--------------------------|-----|
| 14 bytes  | 20 bytes | 8 bytes   | 8 bytes      | VXLAN Encapsulated Frame |     |

Aruba recommends enabling jumbo frames with VXLAN

### **GBP Introduction**

**Enhances Campus VXLAN** 

Virtual network based tunneling solution

Enables role-based policies

Role based policies not tied to IP addresses

VXLAN Flags – G Bit

**Group Policy ID (User Role)** 

Virtual Network Identifier (VNI)

Reserved

**G bit =1** – Group Policy ID present

Outer IP

**Outer UDP** 

VXLAN Header

**Ethernet Frame** 

FCS



#### 10.1.200.0/24 **Role Contractor** Filtering done at the ingress switch 10.1.200.77 10.1.200.4 10.1.200.65 **Policy** 10.1.200.30 **Role Employee** 10.1.200.9 **Allowed** Contractor Printer IoT devices with **DYNAMIC** IPs Medical gear **Denied** Contractor Employee **Allowed** Printer Medical gear **Allowed** Employee

Destination subnet

**Problem with IP Based Policies** 

Impossible to implement with IP based policies

### Role to Policy ID Mapping



Role names are created locally on every required VTEP and mapped to Group Policy ID

### Policy Enforcement: IP Independent



Clients with the same role – default allowed, clients with different role – default denied

#### NetConductor

### Managing policies in large network can be challanging



#### **Policy manager**

- Defines user and device groups
- Creates the associated traffic routing and access enforcement rules for the physical network

#### **Group policy identifier**

- Carries configuration and client policy information
- Reduces configuration and security overhead
- Increases mobility and scalability.

#### **Fabric wizard**

- Simplifies the creation of the overlays
- Intuitive GUI
- Eases configuration of switches and gateways



# Thank You!

